Enabling P4 Hands-on Training in an Academic Cloud

Jose Gomez, Elie Kfouri, Jorge Crichigno
University of South Carolina

International Workshop on Test and Evaluation of Programmable Networks
Marina Del Rey, Los Angeles, California

June 1, 2022
Agenda

• Motivation for virtual labs and Academic Cloud
• Academic Cloud
• POD design and lab libraries
• Using the Academic Cloud
• Relevant features
• Concluding remarks
Motivation for Virtual Labs and Academic Cloud

• According to the IEEE and ACM\(^1\), the IT curriculum should emphasize “learning IT core concepts with authentic practice” and “use of professional tools and platforms”
 ➢ “It is not enough to simply attend courses and read books. Hands-on learning is essential…”

• Using physical laboratories has been challenging
 ➢ Difficult to scale
 ➢ Expensive (space, maintenance, staff)
 ➢ Since COVID-19 emerged, the capacity of labs has been further reduced (distance requirements)

1. Information Technology Curricula 2017, ACM/IEEE Joint Committee. Online: https://tinyurl.com/4nqqwa5m.
Motivation for Virtual Labs and Academic Cloud

• A report on what can be done to reach out those who are yet to be engaged in STEM workforce
• 15 focus groups, experts on research computing infrastructure
 ➢ “The present research computing and data ecosystems look impenetrable to many of those not yet engaged…”
 ➢ “Lower barriers to entry, but build up the controls at the same time”
 ➢ “Invest in cyberinfrastructure and community laboratories at the edge, enabling broader and more diverse participation in science and engineering”
 ➢ “Explore investments in research computing and data infrastructure approaches that are easily accessible (such as GUIs, science apps, and field tools)”
Academic Cloud

- The University of South Carolina (USC) (SC), the Network Development Group (NDG) (NC), and Stanly Community College (SCC) (NC) are deploying the Academic Cloud
- A system dedicated to teaching, training, and research
- The Academic Cloud provides remote-access capability to lab equipment via Internet
- It seamlessly pools and shares resources (CPU, memory, storage) from four data centers; resources are allocated to run virtual laboratories
Academic Cloud

- Data center locations: USC (South Carolina), SCC (North Carolina), NDG (IL), and Idaho National Laboratory (ID)

LMS: Learning Management System. LTI: Learning Tools Interoperability
Academic Cloud

- Data center locations: USC (South Carolina), SCC (North Carolina), NDG (IL), and Idaho National Laboratory (ID)

Front-end portals

(a) NC Cyber; (b) SC Cyber; (b) Companion material for a book; (d) General access
Inside a Data Center

- Hosts 1-n store virtual machines (VMs) for virtual labs
- Management server runs vCenter, Management Software (NETLAB+)
- Partnership with Network Development Group (NDG)

1. Network Development Group (NDG). Online: https://netdevgroup.com
Inside a Data Center

- Example: Stanly Community College

<table>
<thead>
<tr>
<th>Device</th>
<th>Cores</th>
<th>Storage (TBs)</th>
<th>RAM Memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server 1 (management SCC)</td>
<td>20</td>
<td>12</td>
<td>264</td>
</tr>
<tr>
<td>Server 2 (hosting vLabs pods)</td>
<td>32</td>
<td>4</td>
<td>768</td>
</tr>
<tr>
<td>Server 3 (hosting vLabs pods)</td>
<td>32</td>
<td>4</td>
<td>768</td>
</tr>
<tr>
<td>Server 4 (hosting vLabs pods)</td>
<td>32</td>
<td>4</td>
<td>768</td>
</tr>
<tr>
<td>Server 5 (hosting vLabs pods)</td>
<td>32</td>
<td>4</td>
<td>768</td>
</tr>
<tr>
<td>Server 6 (hosting vLabs pods)</td>
<td>32</td>
<td>4</td>
<td>768</td>
</tr>
<tr>
<td>Server 7 (hosting vLabs pods)</td>
<td>48</td>
<td>1.92</td>
<td>768</td>
</tr>
<tr>
<td>Server 8 (hosting vLabs pods)</td>
<td>48</td>
<td>1.92</td>
<td>768</td>
</tr>
<tr>
<td>Server 9 (hosting vLabs pods)</td>
<td>48</td>
<td>1.92</td>
<td>768</td>
</tr>
<tr>
<td>TOTAL</td>
<td>324</td>
<td>37.76</td>
<td>6408</td>
</tr>
</tbody>
</table>
POD Design

- A virtual laboratory experiment requires a **pod** of devices, or simply pod
- Example: perfSONAR library

![POD Design Diagram](image)

<table>
<thead>
<tr>
<th>POD for perfSONAR labs</th>
<th>perfSONAR labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>1. Configuring Administrative Information Using perfSONAR Toolkit GUI</td>
</tr>
<tr>
<td>Border router</td>
<td>2. PerfSONAR Metrics and Tools</td>
</tr>
<tr>
<td>R1</td>
<td>3. Configuring Regular Tests Using perfSONAR GUI</td>
</tr>
<tr>
<td>203.0.113.0/24</td>
<td>5. Configuring Regular Tests Using pScheduler CLI Part II</td>
</tr>
<tr>
<td>R2</td>
<td>6. Bandwidth-delay Product and TCP Buffer Size</td>
</tr>
<tr>
<td>192.168.3.0/24</td>
<td>7. Configuring Regular Tests Using a pSConfig Template</td>
</tr>
<tr>
<td>Client</td>
<td>8. perfSONAR Monitoring and Debugging Dashboard</td>
</tr>
<tr>
<td>Client</td>
<td>9. pSConfig Web Administrator</td>
</tr>
<tr>
<td>perfSONAR1</td>
<td>10. Configuring pScheduler Limits</td>
</tr>
<tr>
<td>perfSONAR2</td>
<td></td>
</tr>
</tbody>
</table>
POD Design

- Details of perfSONAR pod
 - Four networks
 - Three servers
 - One client
 - Three routers
 - Connectivity to the Internet
 - Total of seven heterogeneous VMs
Pod Design

- Details of perfSONAR pod
 - PODs running simultaneously use the same block of IP addresses
 - Lab manuals are uniform
 - There is a master pod in the system
 - Linked clone VMs are created from the master pod VMs
Introduction to P4 Lab Series

Lab experiments
Lab 1: Introduction to Mininet
Lab 2: Introduction to P4 and BMv2
Lab 3: P4 Program Building Blocks
Lab 4: Parser Implementation
Lab 5: Introduction to Match-action Tables (Part 1)
Lab 6: Introduction to Match-action Tables (Part 2)
Lab 7: Populating and Managing Match-action Tables
Lab 8: Checksum Recalculation and Packet Deparsing

Exercises
Exercise 1: Building a Basic Topology
Exercise 2: Compiling and Testing a P4 Program
Exercise 3: Parsing UDP and RTP
Exercise 4: Building a Simplified NAT
Exercise 5: Configuring Tables at Runtime
Exercise 6: Building a Packet Reflector
Lab experiments

Lab 1: Introduction to Mininet
Lab 2: Introduction to P4 and BMv2
Lab 3: P4 Program Building Blocks
Lab 4: Defining and processing custom headers
Lab 5: Monitoring the Switch’s Queue using Standard Metadata
Lab 6: Collecting Queueing Statistics using a Header Stack
Lab 7: Measuring Flow Statistics using Direct and Indirect Counters
Lab 8: Rerouting Traffic using Meters
Lab 9: Storing Arbitrary Data using Registers
Lab 10: Calculating Packets Interarrival Time w/ Hashes and Registers
Lab 11: Generating Notification Messages from the Data Plane
Using the Cloud System

Cyberinfrastructure Lab @ UofSC
Using the Cloud System

Scheduled Lab Reservations

- You have no scheduled lab reservations.
- Select from the Schedule menu above to add reservations.
Using the Cloud System

Introducing P4 programmable data planes with BMv2

- Lab 1: Introduction to Mininet
- Exercise 1: Building a Basic Topology
- Lab 2: Introduction to P4 and BMv2
- Exercise 2: Compiling and Running a P4 Program
- Lab 3: P4 Program Building Blocks
Using the Cloud System
Using the Cloud System

Lab Reservations

<table>
<thead>
<tr>
<th>ID</th>
<th>Date/Time</th>
<th>Description</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>2022-05-31 11:01</td>
<td>Class: P4 Tofino Training</td>
<td>Tofino_H1_300</td>
</tr>
<tr>
<td></td>
<td>2022-05-31 15:00</td>
<td>Lab: Lab 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 hrs., 48 mins.</td>
<td>Type: Instructor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>User: Jorge Crichigno</td>
<td></td>
</tr>
</tbody>
</table>

Showing 1 to 1 of 1 items

New Lab Reservation
Using the Cloud System
Using the Cloud System
Using the Cloud System

- Readily available platform
- Topology complexity
 - 6.4 Tbps programmable switch
 - Tofino programmable chip (Intel)
 - Tofino model for debugging (trace execution in the data plane)
 - Servers to send/receive data to/from the switch/other servers
 - Multi-mode fiber
 - QSFP28+ transceivers
 - Open Network Linux (ONL) (control plane)
 - Software Development Environment (SDE) from Intel (control plane)
 - Compiler
 - Sample P4 codes for each lab (data plane)
 - Laboratory experiments with step-by-step directions (thousands of development hours)

- Logistics
 - NDA with Intel, lawyers’ agreement
 - Procurement process
 - Physical hardware, rack space, data center, etc.
 - Software tools, SDE, operating system, etc.
Cloud Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation of resources</td>
<td>Pod granularity</td>
</tr>
<tr>
<td>Custom pods</td>
<td>Easy to create custom pods</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost-effective when used extensively</td>
</tr>
<tr>
<td>Presentation layer for pedagogy</td>
<td>Topology is graphically presented to the learner using a regular browser</td>
</tr>
<tr>
<td>Time sharing</td>
<td>The owner controls who can access resources; easy to implement time-sharing policies</td>
</tr>
<tr>
<td>IP addresses</td>
<td>Pods (and learners) can have the same topology and IP addresses (overlapping addresses w/o conflict)</td>
</tr>
<tr>
<td>Functional realism</td>
<td>Virtual labs have the same functionality as real IT hardware in a real deployment, and execute the same code</td>
</tr>
<tr>
<td>Traffic realism</td>
<td>Devices generate/receive real, interactive network traffic to/from the Internet, or to/from other devices within the lab environment</td>
</tr>
</tbody>
</table>
Concluding Remarks

• The Academic Cloud has served over 100,000 learners (dozens of virtual libraries: Linux, virtualization, cybersecurity, etc.)
• Academic institutions (colleges, universities, high-schools), training centers
• Self-pace learners
• Usage example from one institution supporting one academic program (~300 students, January 1, 2020 – December 30, 2020)
Concluding Remarks

• The system has shown to be scalable
 ➢ It has served over 100,000 learners in 2020
• Due to the positive feedback, the system is expanding with more virtual labs
• The team is exploring the viability of connecting the Academic Cloud to FABRIC
• URL: http://ce.sc.edu/cyberinfra/cybertraining.html
Acknowledgement

• This work is supported by the National Science Foundation, award 2118311
Academic Cloud vs Public Clouds

<table>
<thead>
<tr>
<th>Feature</th>
<th>Academic Cloud</th>
<th>Public Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation of resources</td>
<td>Granular allocation of physical resources (CPUs, NICs, etc.)</td>
<td>Not granular (access to the physical resources requires additional fees)</td>
</tr>
<tr>
<td>Custom pods</td>
<td>Easy to create custom pods</td>
<td>Difficult; hard to design complex topologies</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost-effective when used extensively</td>
<td>Cost-effective for individual / small VMs; costly for large VMs over time</td>
</tr>
<tr>
<td>Presentation layer for pedagogy</td>
<td>Very flexible. Topology is graphically presented to the learner using a regular browser</td>
<td>Not flexible; limited to providers’ interface, e.g., command-line interface</td>
</tr>
<tr>
<td>Time-sharing resource feature</td>
<td>The owner controls who can access resources. Easy to implement time-sharing policies</td>
<td>Cloud provider controls who can access resources (typically, a fee is required per user)</td>
</tr>
<tr>
<td>Integration of physical devices</td>
<td>Easy; physical hardware can be integrated into pods</td>
<td>Difficult; no subscription plan permits integrating customized physical devices</td>
</tr>
<tr>
<td>Flexible use of IP addresses and subnets</td>
<td>Each pod runs in a sandbox. Pods (and learners) have the same topology and IP addresses (overlapping addresses without conflict)</td>
<td>IP addresses are typically unique. The vLabs manuals and companion material are not identical, requiring per-learner adjustment</td>
</tr>
<tr>
<td>Target</td>
<td>Specially built for pedagogy (education, research, and training)</td>
<td>General, used by a large variety of users</td>
</tr>
<tr>
<td>Typical users</td>
<td>From entry-level learners to PhD researchers</td>
<td>More experienced professionals, educators, students</td>
</tr>
</tbody>
</table>